6,725 research outputs found

    QCDF90: Lattice QCD with Fortran 90

    Get PDF
    We have used Fortran 90 to implement lattice QCD. We have designed a set of machine independent modules that define fields (gauge, fermions, scalars, etc...) and overloaded operators for all possible operations between fields, matrices and numbers. With these modules it is very simple to write high-level efficient programs for QCD simulations. To increase performances our modules also implements assignments that do not require temporaries, and a machine independent precision definition. We have also created a useful compression procedure for storing the lattice configurations, and a parallel implementation of the random generators. We have widely tested our program and modules on several parallel and single processor supercomputers obtaining excellent performances.Comment: LaTeX file, 8 pages, no figures. More information available at: http://hep.bu.edu/~leviar/qcdf90.htm

    Are People Ashamed of Paying with Food Stamps?

    Get PDF
    As is amply documented, there appears to be a large discrepancy between the marginal propensity to purchase food out of cash income and that out of food stamps. In this paper, we have examined both the formal and empirical bases of the claim that marginal welfare stigma explains this puzzling empirical regularity.SOCIAL WELFARE

    Electronic structure and exchange interactions of the ladder vanadates CaV2O5 and MgV2O5

    Full text link
    We have performed ab-initio calculations of the electronic structure and exchange couplings in the layered vanadates CaV2O5 and MgV2O5. Based on our results we provide a possible explanation of the unusual magnetic properties of these materials, in particular the large difference in the spin gap between CaV2O5 and MgV2O5

    The Taming of QCD by Fortran 90

    Get PDF
    We implement lattice QCD using the Fortran 90 language. We have designed machine independent modules that define fields (gauge, fermions, scalars, etc...) and have defined overloaded operators for all possible operations between fields, matrices and numbers. With these modules it is very simple to write QCD programs. We have also created a useful compression standard for storing the lattice configurations, a parallel implementation of the random generators, an assignment that does not require temporaries, and a machine independent precision definition. We have tested our program on parallel and single processor supercomputers obtaining excellent performances.Comment: Talk presented at LATTICE96 (algorithms) 3 pages, no figures, LATEX file with ESPCRC2 style. More information available at: http://hep.bu.edu/~leviar/qcdf90.htm

    Reconstruction of supernova {\nu}_{\mu}, {\nu}_{\tau}, anti-{\nu}_{\mu}, and anti-{\nu}_{\tau} neutrino spectra at scintillator detectors

    Full text link
    We present a new technique to directly reconstruct the spectra of mu/tau neutrinos and antineutrinos from a supernova, using neutrino-proton elastic scattering events (nu+p to nu+p) at scintillator detectors. These neutrinos, unlike electron neutrinos and antineutrinos, have only neutral current interactions, which makes it very challenging, with any reaction, to detect them and measure their energies. With updated inputs from theory and experiments, we show that this channel provides a robust and sensitive measure of their spectra. Given the low yields and lack of spectral information in other neutral current channels, this is perhaps the only realistic way to extract such information. This will be indispensable for understanding flavor oscillations of SN neutrinos, as it is likely to be impossible to disentangle neutrino mixing from astrophysical uncertainties in a SN without adequate spectral coverage of all flavors. We emphasize that scintillator detectors, e.g., Borexino, KamLAND, and SNO+, have the capability to observe these events, but they must be adequately prepared with a trigger for a burst of low-energy events. We also highlight the capabilities of a larger detector like LENA.Comment: v3: Typo corrected in Eq.14, and metadata edits. Matches PRD version. 14 pages, 9 figures, 1 tabl

    Third-Generation TB-LMTO

    Full text link
    We describe the screened Korringa-Kohn-Rostoker (KKR) method and the third-generation linear muffin-tin orbital (LMTO) method for solving the single-particle Schroedinger equation for a MT potential. The simple and popular formalism which previously resulted from the atomic-spheres approximation (ASA) now holds in general, that is, it includes downfolding and the combined correction. Downfolding to few-orbital, possibly short-ranged, low-energy, and possibly orthonormal Hamiltonians now works exceedingly well, as is demonstrated for a high-temperature superconductor. First-principles sp3 and sp3d5 TB Hamiltonians for the valence and lowest conduction bands of silicon are derived. Finally, we prove that the new method treats overlap of the potential wells correctly to leading order and we demonstrate how this can be exploited to get rid of the empty spheres in the diamond structure.Comment: latex2e, 32 printed pages, Postscript figs, to be published in: Tight-Binding Approach to Computational Materials Science, MRS Symposia Proceedings No. 491 (MRS, Pittsburgh, 1998

    Role of c-axis pairs in V2O3 from the band-structure point of view

    Full text link
    The common interpretation of the LDA band structure of V2_{2}O3_{3} is that the apparent splitting of the a1ga_{1g} band into a low intensity structure deep below the Fermi energy and a high intensity feature above it, is due to the bonding-antibonding coupling of the vertical V-V pair. Using tight-binding fitting to --as well as first-principles NMTO downfolding of-- the spin-up LDA+U a1ga_{1g} band, we show that there are other hopping integrals which are equally important for the band shape as the integral for hopping between the partners of the pair

    Warped brane-world compactification with Gauss-Bonnet term

    Full text link
    In the Randall-Sundrum (RS) brane-world model a singular delta-function source is matched by the second derivative of the warp factor. So one should take possible curvature corrections in the effective action of the RS models in a Gauss-Bonnet (GB) form. We present a linearized treatment of gravity in the RS brane-world with the Gauss-Bonnet modification to Einstein gravity. We give explicit expressions for the Neumann propagator in arbitrary D dimensions and show that a bulk GB term gives, along with a tower of Kaluza-Klein modes in the bulk, a massless graviton on the brane, as in the standard RS model. Moreover, a non-trivial GB coupling can allow a new branch of solutions with finite Planck scale and no naked bulk singularity, which might be useful to avoid some of the previously known ``no--go theorems'' for RS brane-world compactifications.Comment: 23 pages, typos in Secs. 5 & 6 corrected, expanded/published version (IJMPA
    • …
    corecore